Pricing

Pricing Relationship with Dated Options

The price of the perpetual option with continuous funding can be expressed as a continuous sum of dated options, weighted exponentially according to the time to expiry of the dated options :

Pperpetual=1T0eτTPdated(τ)dτP_{\text{perpetual}} = \frac{1}{T} \cdot \int_{0}^{\infty} e^{-\frac{\tau}{T}} \cdot P_{\text{dated}}(\tau) \, d\tau

where TT is the funding period of the option

Pricing Functions

Under Black Scholes, the continuous nature of the option results in closed-form solution for the price (this is not the case in the discrete case) under the assumption that the short-term IV σσ is flat for a given strike.

The price of a perpetual option depends on :

  • Type of the option (call/put)]

  • SS : Spot Price of the underlying asset

  • KK : Strike Price of the option

  • qq : The volatility of the underlying asset

    • : The annualised instantaneous interest rate. OrbDex derives this from the perpetual future funding rate FRFR. The relationship is : r=1TFutureFR1+FRr=TFuture11+FRFRr=1TFuture∗FR1+FRr=TFuture​1​∗1+FRFR​ where TFuture=8243650.00091324TFuture=2436580.00091324TFuture=824∗365≈0.00091324TFuture​=24∗3658​≈0.00091324 corresponds to the 8-hour funding period of the perpetual future

    • TTTT : The funding period of the option. Currently set to 5 days, i.e. T5365=0.01369863014T3655=0.01369863014T≈5365=0.01369863014T≈3655​=0.01369863014

Price of a Perpetual Call Option

C={SAKB+(SK1+rT)if SKSAKBif S<KC = \begin{cases} S \cdot A - K \cdot B + \left(S - \frac{K}{1 + r \cdot T} \right) & \text{if } S \geq K \\ S \cdot A - K \cdot B & \text{if } S < K \end{cases}

Price of a Perpetual Put Option

P={SAKBif SKSAKB(SK1+rT)if S<KP = \begin{cases} S \cdot A - K \cdot B & \text{if } S \geq K \\ S \cdot A - K \cdot B - \left(S - \frac{K}{1 + r \cdot T} \right) & \text{if } S < K \end{cases}

where :

A={12(SK)12(1+u)p(1u1),if SK12(SK)12(1u)p(1u+1),if S<KA = \begin{cases} \frac{1}{2} \left( \frac{S}{K} \right)^{-\frac{1}{2}(1+u)} p \cdot \left( \frac{1}{u} - 1 \right), & \text{if } S \geq K \\ \frac{1}{2} \left( \frac{S}{K} \right)^{-\frac{1}{2}(1-u)} p \cdot \left( \frac{1}{u} + 1 \right), & \text{if } S < K \end{cases}
B={12(1+rT)(SK)12(1+ω)q(1ω1),if SK12(1+rT)(SK)12(1ω)q(1ω+1),if S<KB = \begin{cases} \frac{1}{2(1 + r \cdot T)} \left( \frac{S}{K} \right)^{\frac{1}{2}(1+\omega)} q \cdot \left( \frac{1}{\omega} - 1 \right), & \text{if } S \geq K \\ \frac{1}{2(1 + r \cdot T)} \left( \frac{S}{K} \right)^{\frac{1}{2}(1-\omega)} q \cdot \left( \frac{1}{\omega} + 1 \right), & \text{if } S < K \end{cases}
p=1+2rσ2q=12rσ2p = 1 + \frac{2 \cdot r}{\sigma^2} \quad\quad q = 1 - \frac{2 \cdot r}{\sigma^2}
u=1pp2+8σ2Tω=1qq2+8(1+rT)σ2Tu = \frac{1}{p} \sqrt{p^2 + \frac{8}{\sigma^2 \cdot T}} \quad\quad \omega = -\frac{1}{q} \sqrt{q^2 + \frac{8 \cdot (1 + r \cdot T)}{\sigma^2 \cdot T}}

where ΔTVΔTVΔ T V Δ TV -is the delta of the Time Value and is equal to :

ΔTV={A(1(1+u)p2)BKS(1+ω)q2,if SKA(1(1u)p2)BKS(1ω)q2,if S<K\Delta_{TV} = \begin{cases} A \cdot \left( 1 - \frac{(1 + u) \cdot p}{2} \right) - B \cdot \frac{K}{S} \cdot \frac{(1 + \omega) \cdot q}{2}, & \text{if } S \geq K \\ A \cdot \left( 1 - \frac{(1 - u) \cdot p}{2} \right) - B \cdot \frac{K}{S} \cdot \frac{(1 - \omega) \cdot q}{2}, & \text{if } S < K \end{cases}

Gamma

Γ={AS[(1+u)2p1](1+u)2pBKS2[(1+ω)2q1](1+ω)2q,if SKAS[(1u)2p1](1u)2pBKS2[(1ω)2q1](1ω)2q,if S<K\Gamma = \begin{cases} \frac{A}{S} \left[ \frac{(1 + u)}{2} \cdot p - 1 \right] \cdot \frac{(1 + u)}{2} \cdot p - \frac{B \cdot K}{S^2} \left[ \frac{(1 + \omega)}{2} \cdot q - 1 \right] \cdot \frac{(1 + \omega)}{2} \cdot q, & \text{if } S \geq K \\ \frac{A}{S} \left[ \frac{(1 - u)}{2} \cdot p - 1 \right] \cdot \frac{(1 - u)}{2} \cdot p - \frac{B \cdot K}{S^2} \left[ \frac{(1 - \omega)}{2} \cdot q - 1 \right] \cdot \frac{(1 - \omega)}{2} \cdot q, & \text{if } S < K \end{cases}

Vega

ν=SδAδσKδBδσ\nu = S \ast \frac{\delta A}{\delta \sigma} - K \ast \frac{\delta B}{\delta \sigma}

where

δAδσ={4Aσ3((ruprpu2p2urT)(1u2up2log(SK))+r(1+u)2log(SK)),if SK4Aσ3((ruprpu2p2urT)(1u2+u+p2log(SK))+r(1u)2log(SK)),if S<K\frac{\delta A}{\delta \sigma} = \begin{cases} \frac{4 \ast A}{\sigma^3} \ast \left( \left( \frac{r \ast u}{p} - \frac{r}{p \ast u} - \frac{2}{p^2 \ast u \ast r \ast T} \right) \ast \left( \frac{1}{u^2 - u} - \frac{p}{2} \ast \log \left( \frac{S}{K} \right) \right) + \frac{r \ast (1+u)}{2} \ast \log \left( \frac{S}{K} \right) \right), & \text{if } S \geq K \\ \frac{4 \ast A}{\sigma^3} \ast \left( \left( \frac{r \ast u}{p} - \frac{r}{p \ast u} - \frac{2}{p^2 \ast u \ast r \ast T} \right) \ast \left( \frac{-1}{u^2 + u} + \frac{p}{2} \ast \log \left( \frac{S}{K} \right) \right) + \frac{r \ast (1 - u)}{2} \ast \log \left( \frac{S}{K} \right) \right), & \text{if } S < K \end{cases}
δBδσ={4Bσ3((rωq+rqω+2(1+rT)q2ωT)(1ω2ω+q2log(SK))+r(1+ω)2log(SK)),if SK4Bσ3((rωqrqω+2(1+rT)q2ωT)(1ω2+ω+q2log(SK))+r(1ω)2log(SK)),if S<K\frac{\delta B}{\delta \sigma} = \begin{cases} \frac{4 \ast B}{\sigma^3} \ast \left( \left( \frac{-r \ast \omega}{q} + \frac{r}{q \ast \omega} + \frac{2(1 + r \ast T)}{q^2 \ast \omega \ast T} \right) \ast \left( \frac{1}{\omega^2 - \omega} + \frac{q}{2} \ast \log \left( \frac{S}{K} \right) \right) + \frac{r \ast (1 + \omega)}{2} \ast \log \left( \frac{S}{K} \right) \right), & \text{if } S \geq K \\ \frac{4 \ast B}{\sigma^3} \ast \left( \left( \frac{r \ast \omega}{q} - \frac{r}{q \ast \omega} + \frac{2(1 + r \ast T)}{q^2 \ast \omega \ast T} \right) \ast \left( \frac{1}{\omega^2 + \omega} + \frac{q}{2} \ast \log \left( \frac{S}{K} \right) \right) + \frac{r \ast (1 - \omega)}{2} \ast \log \left( \frac{S}{K} \right) \right), & \text{if } S < K \end{cases}

Last updated